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Introduction



Algorithm Selection

Idea of Algorithm Selection:

• Algorithm Selection Problem1: find the individually best suited
algorithm for an unseen optimization problem

1. Rice, J. (1976). The Algorithm Selection Problem. In Advances in Computers (pp. 65-118).
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Algorithm Selection

Requirements:

• Comprehensive benchmark of portfolio solvers
(as a foundation for algorithm selection)

• Suitable performance measure needed, e.g., PAR102, ERT3.
• Performance measures often parameterized.
; How do parameters affect the benchmark results?

Our contribution:

• Systematic analysis of parameterizations on a comprehensive
benchmark study of inexact TSP solvers.

2. Bischl, B. et al. (2016). ASlib: A Benchmark Library for Algorithm Selection. In Artificial Intelligence
Journal (pp. 41-58).

3. Hansen, N. et al. (2009). Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental
Setup. In INRIA Research Report RR-6828.
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Notation

Notation of considered input parameters:

• Set of problem instances I = {I1, . . . , InI},

• Set of algorithms/solvers A = {A1, . . . ,AnA},
• m > 1 independent runs of each A ∈ A on I ∈ I
• ; empirical runtimes rA,I1 , . . . , rA,Im .
• Time limit / cutoff time T ∈ R>0.
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Performance Measures



Performance Measures

Numeric Example:

• 10 runs of solvers X and Y
• budget for runtime rs of successful runs is set to T = 1
• solver X: 8 successful runs (pf = 0.2) with rs = 0.8
• solver Y: 2 successful runs (pf = 0.8) with rs = 0.2

; How do we aggregate the runs (meaningfully)?
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Performance Measures (cont.)

Penalized Average Runtime (PAR)4:

• Arithmetic mean of running times, rA,Ii , i ∈ [m]

• Expired runs are penalized by f · T, where f is the penalty factor

PARA,I(f) :=
1
m

m∑
i=1

r̃A,Ii with r̃A,Ii =

{
f · T, if rA,Ii > T
rA,Ii , otherwise.

• Usually, the rather heuristic value f = 10 is employed.
; PARA,I(10)

4. Bischl, B. et al. (2016). ASlib: A Benchmark Library for Algorithm Selection. In Artificial Intelligence
Journal (pp. 41-58).
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Performance Measures (cont.)

Penalized Quantile Runtime (PQR)5:

• Replace outlier-sensitive mean by more robust p-quantile,
p ∈ (0, 1].

PQRA,I(p, f) :=
{
f · T, if

∑m
i=1 1{r

A,I
i < T} < ⌊mp+ 1⌋

qp(rA,I1 , . . . , rA,Im ), otherwise.

5. Kerschke, P. et al. (2018). Parameterization of State-of-the-Art Performance Indicators: A Robustness
Study Based on Inexact TSP Solvers. In Proceedings of GECCO 2018 Companion (pp. 1737-1744).
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Performance Measures (cont.)

Expected Runtime (ERT)6:

• Popular / most common measure in continuous optimization.

ERTA,I =
1
s

s∑
j=1

rA,Iij +

(
1− ps
ps

)
· T

=
1
s

 s∑
j=1

rA,Iij + (m− s) · T

 .

• Corresponds to average runtime for observing one successful
run.

6. Hansen, N. et al. (2009). Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental
Setup. In INRIA Research Report RR-6828.
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Performance Measures (cont.)

Penalized Expected Runtime (PERT):

• Introducing penalty factor into ERT.

PERTA,I(f) =
1
s

s∑
j=1

rA,Iij +

(
1− ps
ps

)
· f · T

=
1
s

 s∑
j=1

rA,Iij + (m− s) · f · T

 .
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Performance Measures (cont.)

Numeric Example:

• 10 runs of solvers X and Y
• budget for runtime rs of successful runs is set to T = 1
• solver X: 8 successful runs (pf = 0.2) with rs = 0.8
• solver Y: 2 successful runs (pf = 0.8) with rs = 0.2

Performance f = 10 f = 100
Indicator X Y X Y

PARA,I(f) 2.64 8.04 20.64 80.04
PQRA,I(0.5, f) 0.80 10.00 0.80 100.00
ERTA,I 1.05 4.20 1.05 4.20
PERTA,I(f) 3.30 40.20 25.80 400.20
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Case Study

• Based on performance data from our previous TSP algorithm
selection study7:

• Five state-of-the-art inexact TSP solvers (Algorithms A):
• MAOS [4], EAX [3], LKH [2], EAX+restart and LKH+restart [1].

• Six sets of TSP instances (Problems I):
• VLSI, TSPLIB, National, RUE, clustered (netgen) and morphed.

α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
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25

50

75

100
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• EAX+restart was single-best-solver (SBS) regarding PARA,I(10).

7. Kerschke, P. et al. (2017). Leveraging TSP Solver Complementarity through Machine Learning. In ECJ.

10/23



Case Study

• Based on performance data from our previous TSP algorithm
selection study7:

• Five state-of-the-art inexact TSP solvers (Algorithms A):
• MAOS [4], EAX [3], LKH [2], EAX+restart and LKH+restart [1].

• Six sets of TSP instances (Problems I):
• VLSI, TSPLIB, National, RUE, clustered (netgen) and morphed.

α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0

25

50

75

100

x1

x
2

• EAX+restart was single-best-solver (SBS) regarding PARA,I(10).

7. Kerschke, P. et al. (2017). Leveraging TSP Solver Complementarity through Machine Learning. In ECJ.

10/23



Case Study
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Case Study

TSPLIB (22) VLSI (18) Total (1845)

RUE (600) Morphed (600) Netgen (600)
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Case Study

TSPLIB (22) VLSI (18) Total (1845)
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Case Study

RUE (600) Morphed (600) Netgen (600) National (5) TSPLIB (22) VLSI (18) Total (1845)
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Case Study

Observations:

• Finding a suitable pair of penalty factor f and quantile p quickly
becomes very complex.

• (Visual) Comparison of solvers also becomes more difficult.

Idea:

• One basically wants to optimize the runtime and success
probability simultaneously.

• Why not use a multi-objective approach?
; consider for instance HV principle
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Case Study

Numeric Example:

• solver X: 8 successful runs (pf = 0.2) with rs = 0.8
• solver Y: 2 successful runs (pf = 0.8) with rs = 0.2

HVA,I =
(
T− rs

)
·
(
1− pf

)
.

Performance f = 10 f = 100
Indicator X Y X Y

PARA,I(f) 2.64 8.04 20.64 80.04
PQRA,I(0.5, f) 0.80 10.00 0.80 100.00
ERTA,I 1.05 4.20 1.05 4.20
PERTA,I(f) 3.30 40.20 25.80 400.20

HVA,I 0.16 0.16 0.16 0.16
16/23



Case Study

(Visual and Measure Independent) Comparison of TSP Solvers:

Algorithm AS-ECJ AS-UBC EAX EAX+restart LKH LKH+restart MAOS
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Further Comparison of
Performance Measure
Parameterizations



Further Comparison of PerformanceMeasure Parameterizations

(Theoretical) Effect of Penalty Factor on Performance Measures:
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Further Comparison of PerformanceMeasure Parameterizations

(Theoretical) Effect of Quantile on PQR(p, 10)-Score:
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Further Comparison of PerformanceMeasure Parameterizations

HV indicator as performance measure:

Note that HV is robust against alterations of the penalty score.
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Conclusion & Outlook



Conclusion & Outlook

Conclusion:

• We systematically analyzed effects of different
parameterizations of performance indicators.

• Varying penalty factor allows for altering leverage of failed runs.
• (P)ERT is much more prone to single runs
; huge impact of single failed runs.

• Choosing a suitable measure has a huge impact on the actual
performance assessment (for solvers and selectors).

• HV might be a good alternative to common measures.
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Conclusion & Outlook

Outlook:

• Theoretical investigations of indicators.
• Introduction of alternative (multi-objective) indicators8.
• Application in context of algorithm selection.

8. Bossek, J. & Trautmann, H. (2018). Multi-Objective Performance Measurement: Alternatives to PAR10
and Expected Running Time. In Proceedings of LION 2018.
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Questions?
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